A First Countable, Initially Ω1-compact but Non-compact Space

نویسندگان

  • LAJOS SOUKUP
  • Alan Dow
چکیده

We force a first countable, normal, locally compact, initially ω1-compact but non-compact space X of size ω2. The onepoint compactification of X is a non-first countable compactum without any (non-trivial) converging ω1-sequence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-point extensions of locally compact paracompact spaces

A space $Y$ is called an {em extension} of a space $X$, if $Y$ contains $X$ as a dense subspace. Two extensions of $X$ are said to be {em equivalent}, if there is a homeomorphism between them which fixes $X$ point-wise. For two (equivalence classes of) extensions $Y$ and $Y'$ of $X$ let $Yleq Y'$, if there is a continuous function of $Y'$ into $Y$ which fixes $X$ point-wise. An extension $Y$ ...

متن کامل

How to Force a Countably Tight, Initially Ω1-compact and Non-compact Space? I. Juhász and L. Soukup

Improving a result of M. Rabus we force a normal, locally compact, 0-dimensional, Frechet-Uryson, initially ω1-compact and non-compact space X of size ω2 having the following property: for every open (or closed) set A in X we have |A| ≤ ω1 or |X \A| ≤ ω1.

متن کامل

Reflecting Lindelöf and Converging Ω1-sequences

We deal with a conjectured dichotomy for compact Hausdorff spaces: each such space contains a non-trivial converging ω-sequence or a non-trivial converging ω1-sequence. We establish that this dichotomy holds in a variety of models; these include the Cohen models, the random real models and any model obtained from a model of CH by an iteration of property K posets. In fact in these models every ...

متن کامل

Compact-calibres of Regular and Monotonically Normal Spaces

A topological space has calibre ω1 (resp., calibre (ω1,ω)) if every point-countable (resp., point-finite) collection of nonempty open sets is countable. It has compact-calibre ω1 (resp., compact-calibre (ω1,ω)) if, for every family of uncountably many nonempty open sets, there is some compact set which meets uncountably many (resp., infinitely many) of them. It has CCC (resp., DCCC) if every di...

متن کامل

Locally Compact, Ω1-compact Spaces

This paper is centered on an extremely general problem: Problem. Is it consistent (perhaps modulo large cardinals) that a locally compact space X must be the union of countably many ω-bounded subspaces if every closed discrete subspace of X is countable [in other words, if X is ω1-compact]? A space is ω-bounded if every countable subset has compact closure. This is a strengthening of countable ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009